MTH 532, HW I, WARM UP

Ayman Badawi

QUESTION 1. Solve the following system over Z_{8}

$$
\begin{gathered}
2 x+3 y=0 \\
x+y=3
\end{gathered}
$$

sketch: One way eliminate x. Multiply the second equation with the additive inverse of 2 , note $6=-2$ is the additive inverse of 2 in Z_{8}. Hence

$$
\begin{aligned}
& (1) 2 x+3 y=0 \\
& (2) 6 x+6 y=2
\end{aligned}
$$

Now add (1) to (2), we get $9 y=2$. Now the multiplicative inverse of $9=9^{-1}=9$. Hence $y=2$. Substitute $y=2$ in (1), we get $x=1$.

QUESTION 2. Find the inverse of A if possible over Z_{19}

$$
A=\left[\begin{array}{cc}
2 & 17 \\
1 & 1
\end{array}\right]
$$

Sketch $|A|=2+-17=2+2=4$. Hence the inverse of A is $A^{-1}=4^{-1}\left[\begin{array}{cc}1 & 2 \\ 18 & 2\end{array}\right]=5\left[\begin{array}{cc}1 & 2 \\ 18 & 2\end{array}\right]=$ $\left[\begin{array}{cc}5 & 10 \\ 14 & 10\end{array}\right]=$

QUESTION 3. Let $A=\{1,2,3,4\}$ and $R=(P(A),+,$.$) , where +$ and. as explained in the class.

1) Convince me that R does not have a subring with 6 elements. [short answer : a few lines!, by staring] Sketch: Let D be a subring of R. Since $(R,+)$ is a group of order 16 and $(D,+)$ is a subgroup of $(R,+)$, the order of every subgroup must be a factor of 16 . Since 6 is not a factor of $16, R$ does not have a subring with 6 elements.
2) Find the inverse of M where

$$
M=\left[\begin{array}{cc}
\{1,2\} & \{3,4\} \\
\{1,3,4\} & \{1,2,4\}
\end{array}\right]
$$

Sketch: $|M|=A \in U(P(A))$
Hence $M^{-1}=A M^{-1}\left[\begin{array}{ll}\{1,2,4\} & \{3,4\} \\ \{1,3,4\} & \{1,2\}\end{array}\right]=\left[\begin{array}{ll}\{1,2,4\} & \{3,4\} \\ \{1,3,4\} & \{1,2\}\end{array}\right]$
3) Solve for $x, y \in P(A)$ (if possible), where

$$
\begin{gathered}
\{1,2\} x+\{3,4\} y=\{2,4\} \\
\{1,3,4\} x+\{1,2,4\} y=\{1,2\}
\end{gathered}
$$

Sketch Note that M is the coefficient matrix of the system. Hence

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=M^{-1}\left[\begin{array}{l}
\{2,4\} \\
\{1,2\}
\end{array}\right]=\left[\begin{array}{c}
\{2,4\} \\
\{1,2,4\}
\end{array}\right]
$$

QUESTION 4. 1) Let $I=\operatorname{span}\{6,15\}$ over Z, i.e., $I=(4,6) Z$. We know every ideal of Z is of the form $n Z$ for some integer n. Hence $I=n Z$, find n [Hint: $\operatorname{gcd}(a, b)=c a+d b$ for some $c, d \in Z$]

Sketch: Since $\operatorname{gcd}(6,15)=3=6 a+15 b$ for some $a, b \in R$, we conclude that $3 \in I$. Thus span $\{3\} \subset I$. It is clear that $6=3 X 2 \in \operatorname{span}\{3\}$ and $15=3 X 5 \in \operatorname{span} 3$. Since $\operatorname{span}\{3\}$ is an ideal of Z and $6 \in \operatorname{Span}\{3\}$ and $15 \in \operatorname{Span}\{3\}$, we conclude that $6 c+15 d \in \operatorname{span}\{3\}$ for every $c, d \in Z$. Thus $\operatorname{span}\{3\}=\operatorname{Span}\{6,9\}$
2) Let I, K be ideals of a commutative ring R. Prove $I \cap K$ is an ideal of R. Assume neither $I \subseteq K$ nor $K \subseteq I$. Prove that $I \cup K$ is not an ideal of R.
sketch : Let $x, y \in I \cap K$. Then $x, y \in I$ and $x, y \in K$. Hence $x-y \in I$ and $x-y \in K$. Thus $x-y \in I \cap K$. Let $a \in I \cap K$ and $r \in R$. Then $r a \in I$ and $r a \in K$. Hence $r a \in I \cap K$. Thus $I \cap K$ is an ideal of R.

By hypothesis, there is an $x \in I \backslash K$ and $y \in K \backslash I$. Assume $I \cup K$ is an ideal. Hence $x-y \in I \cup K$. Thus $x-y \in I$ or $x-y \in K$. If $x-y \in I$, then $y \in I$, a contradiction. If $x-y \in K$, then $x \in K$, a contradiction.
3) Let $I=\operatorname{span}\{6\}=6 Z$ and $K=\operatorname{span}\{15\}=15 Z$ (note I, K are ideals of Z). Then $I \cap K=n Z$ for some integer n. Find n.

Sketch: Note that $6 \mid n$ and $15 \mid n$. Hence $n=L C M[6,15]=30$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Question 1 :
i) \Rightarrow Let $I=I_{1} \times I_{2}$ be prime, then $\frac{R}{I} \approx \frac{R_{1}}{I_{1}} \times \frac{R_{2}}{I_{2}}$.
$\frac{R}{I}$ is an integral domain as I is prime. juppose I_{1} and I_{2} are both proper. Now "1" $\notin I_{1}$ and " $1 \notin I_{2}$.
let $a=\left(I_{1}, 1+I_{2}\right)$ and $b=\left(1+I_{1}, I_{2}\right)$ but $a b=\left(I_{1,}, 1+I_{1}\right)\left(1+I_{2}, I_{2}\right)$ $=\left(I_{1}, I_{2}\right)$. so R / I contains zero divisors and hence not prime. one of I_{1} and I_{2} must be the whole ring.
Let $R_{1} \times I_{2}=I$ where I_{2} is a prime ideal of R_{2}. (w.l.0.9) $\frac{R}{I} \approx \frac{R_{1}}{R_{1}} \times \frac{R_{2}}{I_{2}}$. Since $\frac{R_{1}}{R_{1}} \times \frac{R_{2}}{I_{2}}$ is an integral domain. 50 is $\frac{R}{I}$.
(ii) \Rightarrow Let I be maximal then I is prime and by (i) $I=I_{1} \times R_{2}$ or $I=R_{1} \times I_{2}$ for some prime ideals I_{1}, I_{2} of R_{1}, R_{2} respectively.
$I=R_{1} \times I_{2}$ for some prime
Now, (w.log) let $I=I_{1} \times R_{2}$.
$\frac{R}{I} \approx \frac{R_{1}}{I} \times \frac{R_{2}}{R}$. but R / I is a lid since I is maximal. Hence I_{1} must be a maximal ideal.
Let $I_{1} \times R_{2}=I$ where I_{1} is a maximal ideal of $R_{1}(w \cdot 1.0 . \mathrm{g})$. Then, $\frac{R_{1}}{I_{1}} \times \frac{R_{2}}{R_{2}}$ is a field. $\frac{R_{1}}{I_{1}} \times \frac{R_{2}}{R_{2}} \approx \frac{R}{I}$.

I must be maximal.

Question 2:
(i) Let $x \in R$ be irreducible of PID R. We show $\times R$ is maximal and and hence $x R$ is prime Thus x is aprime of R.
Consider the ideal $\times R$. By contradiction assume $x R$ is not maximal. then $x R \subset I \subset R$ for some maximal proper ideal I.
Since R is a PID $\exists m \in R$ st. $I=m R$.
$x \in I$ so $x=m r$ for some $r \in R$, but x is reducible so either m is aunit or r is aunit. m is not a unit as $m \in I$.
So $m=x r^{-1} \Rightarrow m R=x R$, which is a contradiction. Our initial assumption is wrong. $X R$ is a maximal ideal
(ii) I is apime ideal so $I \subseteq M$ for some maximal ideal M. $\exists a \in R$ o.t. $I=a R$ where a isprime. $M=m R$ for some $m \in R$ $a \in M \Rightarrow a=m r$ for some $r \in R$, since a is prime $m \in I$ or $r \in I$. - If $m \in I$, then $M=m R \subset I$ and Hence $M=I$ and we are done.

- If $r \in I$, then $\exists s \in R$ sit. $r=a s$, so $a=m r=$ mas.
R is an integral domain, Cancellation laws hold. $\Rightarrow m s=1$, which means m is a unit. Therefore $H=R$, so I is maximal.

Let I be a proper Prime ideal of R. Since I is prime of $R, R / I$ is
Question 3: an integral domain.
R is finite, so R / I is finite as well, but every finite integral domain is a field as proved in homework 1 .
R / I is a field if I is a maximal ideal of R. Hence, I is maximal.

Question 4 :
Char $(R)=P$ means $P r=0 \quad \forall r \in R$. Using the binomial theorem we get $(x+y)^{p^{n}}=\sum_{i=0}^{p^{n}}\binom{p^{n}}{i} x^{2} y^{p^{n}-i}=x^{p^{n}} y^{0}+\frac{p^{n}!}{\left(p^{n}-1\right)!} x^{P^{n}-1} y+\ldots+\frac{p^{n}!}{\left(p^{n}-1\right)!\left(2 p^{n}-1\right)!} x y^{p^{n}-1}+y^{P^{n}} x^{0}$
P divides every term in the last expression except the first and the last so all terms vanish but not $x^{p^{n}}$ and $y^{p^{n}}$. Hence,

$$
(x+y)^{p^{n}}=x^{p^{n}}+y^{p^{n}}
$$

Question 5:

I and K being co prime means $\exists i \in I$ and $k \in K$ such that $i+K=1$

$$
1=1^{m+n-1}=(i+k)^{m+n-1} \text { using binomial theorem. }
$$

5

$$
(i+k)^{m+n-1}=\sum_{\substack{j-1 \\ n-1}}^{m+n-1}\binom{m+n-1}{j} i^{j} k^{m+n-1}
$$

$$
+\sum_{j=n}^{m+n-1}\binom{m+n-1}{j} i^{j k^{m+n-1-j}}
$$

(II)
K^{m} is a factor of each term in (I) and $K^{m} \in K^{m}$.
i^{n} is a factor of each term in (II) and $i^{n} \in I^{n}$.
Thus the sum is in $I^{n}+K^{m}$ and hence $1 \in I^{n}+K^{m}$ which implies I^{n} and K^{m} are co-prime.

Question 6:

By staring, it is clear that $x^{\wedge} 5 Q[x]=I$ (intersection) K. So if $x^{\wedge} 5 Q[x]$ is a principal ideal of R, then 1 (intersection)K $=x^{\wedge} 5 R$.
$0.5 x^{\wedge} 5$ is in I (Intersection) K, but $0.5 x^{\wedge} 5$ is not in $x^{\wedge} 5 R$ (since $1 / 2$ is not in R)

Question 7:

R is a finite ring. Let $r_{1} \ldots$, , n be all non zero elements of R. Take any $r \neq 0 \in R$, then $r_{r} \ldots, r_{r_{n}}$ are elements in R and are distinct since
$r_{r_{i}}=r_{j} \Rightarrow r_{i}-r_{j}=0=r\left(r_{1}-r_{j}\right) \Rightarrow r_{i}-r_{j}=0 \Rightarrow r_{1}=r_{j}$. for $1 \leqslant i, 1 \leqslant n$ Since $r \in R \quad r r_{k}=r$ for some $r_{k} \in R \quad r_{k} \neq 0$
Now take any arbitrary $a \in R . \quad \operatorname{ar} r_{k}=a r \Rightarrow a r r_{k}-a r=0$
$\Rightarrow r\left(a r_{k}-a\right)=0 \Rightarrow a r_{k}-a=0 \Rightarrow a r_{k}=a . r_{k}$ is a unit.
R is an integral domain and hence a fld by problem 3 in home work 1

MTH 532, HW III

Ayman Badawi

Submit by midnight Tuesday October 25, 2022, send pdf file only, easy to read and organized to abadawi@aus.edu
QUESTION 1. (Freshman dream): Let R be a commutative ring with $1 \neq 0$ such that $\operatorname{char}(R)=p$ a prime number. Let $x, y \in R$. Prove that $(x+y)^{p^{n}}=x^{p^{n}}+y^{p^{n}}$ for every $n \geq 1$ [Hint: prove it directly or use math induction]

Proof. We use Math. Induction

i) Let $n=1$. Then $(x+y)^{p}=x^{p}+p c_{p-1} x^{p-1} y+\cdots+p x y^{p-1}+y^{p}$ (by the binomial expansion theorem, note that $p c_{p-1}=p c_{p-2}=\cdots=p=0$ in R)
ii) Assume that $(x+y)^{p^{n}}=x^{p^{n}}+y^{p^{n}}$ for some $n \geq 1$
iii) We prove it for $n+1$. Hence by (ii) and (i), we have

$$
(x+y)^{p^{n+1}}=\left((x+y)^{p^{n}}\right)^{p}=\left(x^{p^{n}}+y^{p^{n}}\right)^{p}=x^{p^{n+1}}+y^{p^{n+1}}
$$

QUESTION 2. Show that $N i l(R) \subseteq P$ for every prime ideal P of a commutative ring R.[Hint: not difficult, but important fact]

Proof. Let P be a prime ideal of R. Let $x \in \operatorname{Nil}(R)$. Hence $x^{n}=0 \in P$ for some integer $n \geq$. Let m be the least positive integer such that $x^{m} \in P$. Thus $x^{m-1} x \in P$. Since P is prime, we have $x^{m-1} \in P$ or $x \in P$. Since m is the least positive integer such that $x^{m} \in P$, we conclude that $x^{m-1} \notin P$. Hence $x \in P$.

QUESTION 3. (a)Let $K=Q(\sqrt{5} i)=\{a+b \sqrt{5} i \mid a, b \in Q\}(i=\sqrt{-1})$. Prove that F is a field [: Hint it is straight forward to see that K is a commutative ring with 1 , Do not show that. Just show that if $x=a+b \sqrt{5} i \in K^{*}$, then $x^{-1} \in K$. Note that then $\left.x^{-1}=1 / x=\frac{a}{a^{2}+5 b^{2}}-\frac{b \sqrt{5} i}{a^{2}+5 b^{2}}\right]$

No comments, it is clear by the hint
(b) (nice) Let K as in (a) and $A=Q[x]$ prove that $\frac{A}{\left(x^{2}+5\right) A}$ is ring-isomorphic to K. [Hint : Construct a ring homomorphism from A ONTO K, then use the first isomorphism Theorem.]

Proof. Let $T: A \rightarrow K$ such that $T(f(x))=f(\sqrt{5} i)$. Let $\left.f_{(} x\right), f_{2}(x) \in A$. Hence $T\left(f_{1}(x)+f_{2}(x)\right)=$ $f_{1}(\sqrt{5} i)+f_{2}(\sqrt{5} i)=T\left(f_{1}(x)\right)+T\left(f_{2}(x)\right)$ and $T\left(f_{1}(x) f_{2}(x)\right)=f_{1}(\sqrt{5} i) f_{2}(\sqrt{5} i)=T\left(f_{1}(x)\right) T\left(f_{2}(x)\right)$. Thus T is a ring homomorphism. We show that T is ONTO. Let $y \in K$. Then $y=a+b \sqrt{5} i$ for some $a, b \in Q$. Let $f(x)=a+b x \in Q[x]$. Then $T(f(x))=f(\sqrt{5} i)=a+b \sqrt{5} i=y$. Hence T is ONTO. We know $\operatorname{Ker}(T)=\{h(x) \in A \mid T(h(x))=h(\sqrt{5} i)=0\}$ is an ideal of A. Since A is a PID, $\operatorname{Ker}(T)=d(x) A$ for some monic polynomial $d(x)$ such that $T(d(x))=d(\sqrt{5} i))=0$, Since $x^{2}+5$ is the smallest such polynomial in $Q[x]$. We conclude that $\operatorname{Ker}(T)=\left(x^{2}+5\right) A$. Thus we know $A / \operatorname{Ker}(T) \cong \operatorname{Range}(T)=K$ (since T is onto). Thus $A /\left(x^{2}+5\right) A \cong K$.
(c)Let R be a PID. Prove that every prime ideal of R is maximal. [hint: Let I be a prime idea of R , then we know $I \subseteq M$ for some maximal ideal M of R . Show $M \subseteq I$, note that R is a PID]

Proof. Let P be a prime ideal of R. Since R is a PID, we have $P=p R$ for some prime element p of R. Hence $P=p R \subseteq M$ for some maximal ideal M of R. Since R is a PID, $M=y R$ for some nonunit y of R. Thus $p \in y R$. Hence $p=y w$ for some $w \in R$. Since every prime element of an integral domain is irreducible and $p=y w$, we conclude $w \in U(R)$. Thus $y=w^{-1} p$. Hence $y \in p R$. Since $y \in p R$ and $p \in y R$, we conclude that $P=M$ is a maximal ideal of R.
(d) Let R be a PID. Prove that every irreducible element in R is prime [use (c). Let x be irreducible, then xR lives inside a maximal ideal M of R. Note that, in general, for any ring R, if y in R is prime, then uy is prime for every u in $U(R)]$

Proof. Let x be an irreducible element of R. Then $x R \subseteq M$ for some maximal ideal M of R. Since \mathbf{R} is a PID and every maximal ideal of R is prime, $M=p R$ for some prime element p of R. Hence $x=p w$ for some $w \in R$. Since x is irreducible and p is not a unit of R, we conclude that $w \in U(R)$. Hence \mathbf{x} is a prime element of R,

FACTS (know), add to your common knowledge dictionary
Let R be a commutative ring with 1 and $f(x) \in R[x]$. Then

1) $f(x) \in Z(R[x])$ if and only if there is a $w \in Z(R)^{*}$ such that $w f(x)=0$ [nice result, the proof is technical , you need to keep tracking of the coefficients of $f(x)$. So just know it]
2) $f(x)=a_{n} x^{n}+\cdots+a_{1} x+b \in U(R[x])$ if and only if $a_{1}, \ldots, a_{n} \in N i l(R)$ and $b \in U(R)$ [this is not hard to prove, it is easy to see that $a_{n} x^{n}+\cdots+a_{1} x$ is a nilpotent and by HW 2 nilpotent + unit $=$ unit]

QUESTION 4. Use the fact above
a) Convince me that $f(x)=3 x^{5}+2 x+4 \notin Z\left(Z_{6}[x]\right)$ [Note $\left.2,3,4 \in Z\left(Z_{6}\right)^{*}\right]$

By the FACT, There is no $a \in Z(R)^{*}$ such that $a f(x)=0$
b) Convince me that $f(x)=10 x^{2023}+5 x^{3}+10 \in Z\left(Z_{15}[x]\right)$.
since $3 f(x)=0$, by the FACT, we are done.
c) Give me a polynomial of degree 1963 , say $h(x)$, such that $h(x)\left(4 x^{9}+2 x+6\right)=0$ in $Z_{10}[x]$.
by (b), let $f(x)=3 x^{1963}+6 x^{63}+9$
d) Convince me that $f(x)=6 x^{2}+3 x+5 \notin U\left(Z_{12}[x]\right)$

Since $3 \notin \operatorname{Nil}\left(Z_{12}\right)$, by the FACT, $f(x)$ is not nilpotent.
e) Convince me $2 x^{4}+6 x+11 \in U\left(Z_{16}[x]\right)$

Since $2,6 \in \operatorname{Nil}\left(Z_{16}\right)$ and $11 \in U\left(Z_{16}\right)$, by the fact, we are done.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 532, HW IV

Ayman Badawi

Submit by midnight Tuesday November 15, 2022, send pdf file only, easy to read and organized to abadawi@aus.edu

QUESTION 1. Let F be a finite field with p^{n} elements where $n \geq 2$. Prove that $(F,+)$ is never a cyclic group; note that some authors write $G F\left(p^{n}\right)$ (you read it, Galois field with p^{n} elements) to mean a finite field with p^{n} elements. [Hint: Note that F is a Z_{p}-module, use class notes]

Proof. By class notes F is a Z_{p}-module and $(F,+) \cong A=\left(Z_{p},+\right) X \cdots \times\left(Z_{p},+\right)(n \geq 2$ times $)$. By staring, each nonzero element in A is of order p (under addition $\bmod \mathbf{p}$). Hence A has no elements of order p^{n}. Since $(F,+) \cong A, F$ has no elements of order p^{n}. Thus $(F,+)$ is not cyclic.

Another proof. We know $\operatorname{char}(F)=p$, i.e., $p .1_{F}=1_{F}+\cdots+1_{F}$ (p times) $=0$. Let $a \in F^{*}$. Then $p . a=a+\cdots+a(\mathbf{p}$ times $)=\left(p .1_{F}\right) a=0 . a=0$. Thus the order of a under addition is p. Hence F has no elements of order $p^{n}(n \geq 2)$. Hence $(F,+)$ is not cyclic.

QUESTION 2. (nice and applicable)
a) Let D be an integral domain and $f(x)$ be a monic polynomial of degree 2 or 3 in $D[x]$. Prove that $f(x)$) is irreducible in $D[x]$ if and only if there is no $a \in D$ such that $f(a)=0$ (i.e., if and only if $f(x)$ has no roots in D)

Proof. Assume $f(x)$ is irreducible of degree n (degree 2 or 3 not needed for this direction), and $a \in D$. Then $f(x) \neq(x-a) h(x)$ for some $h(x) \in D[x]$, where $\operatorname{deg}(h)<\operatorname{deg}(f)$. Thus $f(a) \neq 0$ for every $a \in D$. For the converse, assume degree $(\mathbf{f})=\mathbf{2}$. Since $f(a) \neq 0$ for every $a \in D$, we conclude that for every $b, c \in D$, $f(x) \neq(x-b)(x-c)$. Hence $f(x)$ is irreducible. Assume degree $(\mathbf{f})=3$. Since $f(a) \neq 0$ for every $a \in D$, we conclude that $f(x) \neq(x-a) h(x)$ for every $a \in D$, and $h(x) \in D[x]$, where $\operatorname{deg}(h)=2$. Hence $f(x)$ is irreducible.

Note that degree $\mathbf{2}$ or $\mathbf{3}$ is needed for the converse. For example, if $f(x)$ is of degree 4 and $f(a) \neq 0$ for every $a \in D$, then $f(x)$ need not be irreducible. It is possible that $f(x)=h_{1}(x) h_{2}(x)$, where h_{1}, h_{2} are irreducible of degree 2.
b) Prove that $f(x)=x^{3}+x^{2}+2 x+1$ is irreducible in $Z_{3}[x]$.

Since $\operatorname{deg}(f)=3$ and $f(a) \neq 0$ for every $a \in Z_{3}$, by (a) we conclude that $f(x)$ is irreducible.
c) Write $f(x)=x^{16}+1$ as product of irreducible elements in $D=Z_{2}[x]$ [Hint: Make use of the freshman dream]

Since $\operatorname{char}(D)=2$, by the freshman dream result, $x^{16}+1=x^{2^{4}}+1=(x+1)^{2^{4}}=(x+1) \times \cdots \times(x+1)$ (16 times).

QUESTION 3. Let $F=G F\left(5^{28}\right)$ and $L=A u t_{Z_{5}}(F)$. Recall that if H is a subgroup of L, then we say H fixes the subfield E of F if for each element in H (read again, for EACH element in H), say $h(x) \in H$, we have $h(e)=e$ for each $e \in E$.

Write down all subgroups of L, and for each subgroup of L find the unique fixed subfield of F.
Let $D=\{1,2,4,7,14,28\}$ be the set of all factors of 28. By class notes, for each $m \in D, F$ has one and only one subfield E_{m}, where $\left|E_{m}\right|=5^{m}$.

We know $\left|A u t_{Z_{5}}(F)\right|=28$ and $\left(\operatorname{Aut}_{Z_{5}}(F), o\right)$ is a cyclic group generated by $f_{1}: F \rightarrow F$ such that $f_{1}(a)=a^{5}$.
(i) For $m=1$, Aut $_{Z_{5}}(F)=<f_{1}: F \rightarrow F, f_{1}(a)=a^{5}>$ and it fixed the subfield Z_{5}, note $\left|A u t_{Z_{5}}(F)\right|=28$.
(ii) For $m=2, A u t_{E_{2}}(F)=<f_{2}: F \rightarrow F, f_{2}(a)=a^{5^{2}}>$ and it fixed the subfield $E_{2}=\left\{a \in F \mid a^{5^{2}}=a\right\}$, note $\left|A u t_{E_{2}}(F)\right|=14$.
(iii) For $m=4$, $A u t_{E_{4}}(F)=<f_{4}: F \rightarrow F, f_{4}(a)=a^{5^{4}}>$ and it fixed the subfield $E_{4}=\left\{a \in F \mid a^{5^{4}}=a\right\}$, note $\left|A u t_{E_{4}}(F)\right|=7$
(iv) For $m=7, \operatorname{Aut}_{E_{7}}(F)=<f_{7}: F \rightarrow F, f_{7}(a)=a^{5^{7}}>$ and it fixed the subfield $E_{7}=\left\{a \in F \mid a^{5^{7}}=a\right\}$, note $\left|A u t_{E_{7}}(F)\right|=4$
(v) For $m=14, A u t_{E_{14}}(F)=<f_{14}: F \rightarrow F, f_{14}(a)=a^{5^{14}}>$ and it fixed the subfield $E_{14}=\left\{a \in F \mid a^{5{ }^{54}}=\right.$ $a\}$, note $\left|A u t_{E_{14}}(F)\right|=2$
(vi) For $m=28$, Aut $_{E_{28}}(F)=\operatorname{Aut}_{F}(F)=<f_{28}: F \rightarrow F, f_{28}(a)=a^{5^{28}}=a>$ and it fixed the subfield F, note $\left|A u t_{E_{28}}(F)\right|=1$

QUESTION 4. Let R be a commutative ring with $1 \neq 0$ and $S=\{P \mid P$ is a prime ideal of $R\}$. Prove that $N i l(R)=\sqrt{R}$; recall that $\sqrt{R}=\cap_{P \in S} P$ [Hint: We know that $N i l(R) \subseteq P$ for every $P \in S$ and use the result that we proved: If D is a multiplicatively closed set and I is a proper ideal of R such that $D \cap I=\emptyset$, then there is a prime ideal W of R such that $I \subseteq W$ and $W \cap D=\emptyset$]

Proof. Since $N i l(R) \subseteq P$ for every prime ideal P of R, it is clear that $N i l(R) \subseteq \sqrt{R}=\cap_{P \in S} P$. We show that $\cap_{P \in S} P \subseteq \operatorname{Nil}(R)$. Deny. Then there is an $x \in \cap_{P \in S} P \backslash \operatorname{Nil}(R)$. Thus $x^{m} \notin \operatorname{Nil}(R)$ for every integer $m \geq 1$.

Thus $D=\left\{1, x, x^{2}, \ldots, x^{m}, \cdots\right\}$ is a multiplicatively closed set of R such that $D \cap \operatorname{Nil}(R)=\emptyset$. Hence, by class result, there is a prime ideal W of R such that $\operatorname{Nil}(R) \subseteq W$ and $W \cap D=\emptyset$. Thus $x^{m} \notin W$ for every integer $m \geq 1$. In particular, $x \notin W$. Since W is a prime ideal of R and $x \notin W$, we conclude that $x \notin \sqrt{R}=\cap_{P \in S} P$, a contradiction. Thus $\cap_{P \in S} P \subseteq \operatorname{Nil(R)}$. Hence $\sqrt{R}=\cap_{P \in S} P=\operatorname{Nil}(R)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

