MTH 532, Fall 2022, 1-2

MTH 532, HW I, WARM UP

-. ID -

Ayman Badawi

QUESTION 1. Solve the following system over Z_8

2x + 3y = 0x + y = 3

sketch: One way eliminate x. Multiply the second equation with the additive inverse of 2, note 6 = -2 is the additive inverse of 2 in Z_8 . Hence

$$(1)2x + 3y = 0$$

(2)6x + 6y = 2

Now add (1) to (2), we get 9y = 2. Now the multiplicative inverse of $9 = 9^{-1} = 9$. Hence y = 2. Substitute y = 2 in (1), we get x = 1.

QUESTION 2. Find the inverse of A if possible over Z_{19}

$$A = \begin{bmatrix} 2 & 17\\ 1 & 1 \end{bmatrix}$$

Sketch |A| = 2 + -17 = 2 + 2 = 4. Hence the inverse of A is $A^{-1} = 4^{-1} \begin{bmatrix} 1 & 2 \\ 18 & 2 \end{bmatrix} = 5 \begin{bmatrix} 1 & 2 \\ 18 & 2 \end{bmatrix} = 5 \begin{bmatrix} 5 & 10 \end{bmatrix}$

$$\begin{bmatrix} 3 & 10 \\ 14 & 10 \end{bmatrix} =$$

QUESTION 3. Let $A = \{1, 2, 3, 4\}$ and R = (P(A), +, .), where + and \cdot as explained in the class.

1) Convince me that R does not have a subring with 6 elements. [short answer : a few lines!, by staring] Sketch: Let D be a subring of R. Since (**R**, +) is a group of order 16 and (**D**, +) is a subgroup of (R, +), the order of every subgroup must be a factor of 16. Since 6 is not a factor of 16, **R** does not have a subring with 6 elements.

2) Find the inverse of M where

$$M = \begin{bmatrix} \{1,2\} & \{3,4\}\\ \{1,3,4\} & \{1,2,4\} \end{bmatrix}$$

Sketch: $|M| = A \in U(P(A))$
Hence $M^{-1} = AM^{-1} \begin{bmatrix} \{1,2,4\} & \{3,4\}\\ \{1,3,4\} & \{1,2\} \end{bmatrix} = \begin{bmatrix} \{1,2,4\} & \{3,4\}\\ \{1,3,4\} & \{1,2\} \end{bmatrix}$

3) Solve for $x, y \in P(A)$ (if possible), where

$$\{1,2\}x + \{3,4\}y = \{2,4\}$$

$$\{1,3,4\}x + \{1,2,4\}y = \{1,2\}$$

Sketch Note that M is the coefficient matrix of the system. Hence

$$\begin{bmatrix} x \\ y \end{bmatrix} = M^{-1} \begin{bmatrix} \{2,4\} \\ \{1,2\} \end{bmatrix} = \begin{bmatrix} \{2,4\} \\ \{1,2,4\} \end{bmatrix}$$

QUESTION 4. 1) Let $I = span\{6, 15\}$ over Z, i.e., I = (4, 6)Z. We know every ideal of Z is of the form nZ for some integer n. Hence I = nZ, find n [Hint: gcd(a, b) = ca + db for some $c, d \in Z$]

Sketch: Since gcd(6, 15) = 3 = 6a + 15b for some $a, b \in R$, we conclude that $3 \in I$. Thus $span\{3\} \subset I$. It is clear that $6 = 3X2 \in span\{3\}$ and $15 = 3X5 \in span3$. Since $span\{3\}$ is an ideal of Z and $6 \in Span\{3\}$ and $15 \in Span\{3\}$, we conclude that $6c + 15d \in span\{3\}$ for every $c, d \in Z$. Thus $span\{3\} = Span\{6, 9\}$ 2) Let I, K be ideals of a commutative ring R. Prove $I \cap K$ is an ideal of R. Assume neither $I \subseteq K$ nor $K \subseteq I$. Prove that $I \cup K$ is not an ideal of R.

sketch : Let $x, y \in I \cap K$. Then $x, y \in I$ and $x, y \in K$. Hence $x - y \in I$ and $x - y \in K$. Thus $x - y \in I \cap K$. Let $a \in I \cap K$ and $r \in R$. Then $ra \in I$ and $ra \in K$. Hence $ra \in I \cap K$. Thus $I \cap K$ is an ideal of R.

By hypothesis, there is an $x \in I \setminus K$ and $y \in K \setminus I$. Assume $I \cup K$ is an ideal. Hence $x - y \in I \cup K$. Thus $x - y \in I$ or $x - y \in K$. If $x - y \in I$, then $y \in I$, a contradiction. If $x - y \in K$, then $x \in K$, a contradiction.

3) Let $I = span\{6\} = 6Z$ and $K = span\{15\} = 15Z$ (note I, K are ideals of Z). Then $I \cap K = nZ$ for some integer n. Find n.

Sketch: Note that 6 | n and 15 | n. Hence n = LCM[6, 15] = 30

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

 $E\text{-mail:} \verb"abadawi@aus.edu", www.ayman-badawi.com"$

Homework 2

Hadeel Kittaneh 900093357

Question 1 : i) \checkmark Let $I = I, XI_2$ be prime, then $\frac{R}{T} \approx \frac{R}{T} \times \frac{R_2}{T_2}$. $\frac{K}{I}$ is an integral domain as I is prime. Suppose I, and I_2 are both proper. Now "I" & II and "I" & I2. let $a = (I_1, 1 + I_2)$ and $b = (1 + I_1, I_2)$ but $ab = (I_1, 1 + I_1)(1 + I_2, I_2)$ = (I, , I2). So R/I contains zero divisors and hence not prime. one of I and I2 must be the whole ring. Let RIXI2 = I where I2 is a prime ideal of R2. (W.L.O.9) $\frac{R}{I} \approx \frac{R_1}{R_1} \times \frac{R_2}{T_2}$, Since $\frac{R_1}{R_1} \times \frac{R_2}{T_2}$ is an integral domain. So is $\frac{R}{I}$. (ii) → let I be maximal then I is prime and by (i) I = I, XR2 or I=R, X I2 for some prime ideals I, I2 of R. R2 respectively. $\frac{R}{I} \approx \frac{R_1}{I_1} \times \frac{R_2}{R_2}$, but $\frac{R_1}{I_1}$ is a field since I is maximal. Hence I, must ← let I, XR2=I where I, is a maximal ideal of R. (w.1.0.9). Then, RIX RZ is a field. RIX RZ NIT. I must be maximal.

Question 2:

- in let x & R be irreducible of PID R. We show XR is maximal and and hence xR is prime Thus x is aprime of R. Consider the ideal XR. By contradiction assume XR is not maximal, then XRCICR for some maximal proper ideal I. Since R is a PID I MER s.t. I = mR. XEI JO X=mr for some reR, but X is meducible so either m is a unit or r is a unit. m is not a unit as mEI. Jo $m = Xr^{-1} \implies mR = XR$, which is a contradiction. Our initial assumption is wrong. XR is a maximal ideal (iii) I is a prime ideal so I CM for some maximal ideal H.
- Jack o.t. I = aR where a isprime. M=mR for some meR aEM => a=mr for some rER, since a is prime mEI or rEI. . If meI, then M=mRCI and Hence M=I and we are done.
 - ·If veI, then IsER s.L. v=as, so a=mr=mas. R is an Integral domain, so cancellation laws hold. >> ms=1, which means m is a unit. Therefore H=R, Jo I is maximal.

Question 3:

Let I be a proper Prime ideal of R. Since I is prime of R, R/I is R is finite, so RII is finite as well, but every finite integral domain is

R/I is a field iff I is a maximal ideal of R. Hence, I is maximal.

Question 4:

char (R) = P means Pr=0 V reR. Using the binomial theorem we get $(x+y)^{p} = \sum_{i=0}^{p} {p \choose i} x^{i} y^{p^{2}-i} = x^{p^{2}} y^{*} + \frac{p^{n}!}{(p^{n}-1)!} x^{p^{n}-1} y + \dots + \frac{p^{n}!}{(p^{n}-1)!} (2p^{n}-1)! x^{p^{n}} + y^{n} x^{p^{n$ P divides every term in the last expression except the first and the last so all terms vanish but not x^{p^n} and y^{p^n} . Hence,

 $(x+y)^{p^{n}} = x^{p^{n}} + y^{p^{n}}$

Question 5:
I and K being CoProve means I (eI and KcK 5wh Hw) (iKFI)

$$i = 1^{m+n+1} = (i+k)^{m+1}$$
, using binomial theorem,
 $i = 1^{m+n+1} = (i+k)^{m+1}$, $i \neq m^{n+1}$

homework 1.

J

MTH 532, Fall 2022, 1-2

–, ID –

MTH 532, HW III

Ayman Badawi

Submit by midnight Tuesday October 25, 2022, send pdf file only, easy to read and organized to abadawi@aus.edu

QUESTION 1. (Freshman dream): Let R be a commutative ring with $1 \neq 0$ such that char(R) = p a prime number. Let $x, y \in R$. Prove that $(x + y)^{p^n} = x^{p^n} + y^{p^n}$ for every $n \geq 1$ [Hint: prove it directly or use math induction]

Proof. We use Math. Induction

i) Let n = 1. Then $(x + y)^p = x^p + pc_{p-1}x^{p-1}y + \dots + pxy^{p-1} + y^p$ (by the binomial expansion theorem, note that $pc_{p-1} = pc_{p-2} = \dots = p = 0$ in R)

ii) Assume that $(x+y)^{p^n} = x^{p^n} + y^{p^n}$ for some $n \ge 1$

iii) We prove it for n + 1. Hence by (ii) and (i), we have

$$(x+y)^{p^{n+1}} = \left((x+y)^{p^n}\right)^p = (x^{p^n} + y^{p^n})^p = x^{p^{n+1}} + y^{p^{n+1}}$$

QUESTION 2. Show that $Nil(R) \subseteq P$ for every prime ideal P of a commutative ring R.[Hint: not difficult, but important fact]

Proof. Let P be a prime ideal of R. Let $x \in Nil(R)$. Hence $x^n = 0 \in P$ for some integer $n \ge$. Let m be the least positive integer such that $x^m \in P$. Thus $x^{m-1}x \in P$. Since P is prime, we have $x^{m-1} \in P$ or $x \in P$. Since m is the least positive integer such that $x^m \in P$, we conclude that $x^{m-1} \notin P$. Hence $x \in P$.

QUESTION 3. (a)Let $K = Q(\sqrt{5}i) = \{a + b\sqrt{5}i \mid a, b \in Q\}$ $(i = \sqrt{-1})$. Prove that F is a field [: Hint it is straight forward to see that K is a commutative ring with 1, Do not show that. Just show that if $x = a + b\sqrt{5}i \in K^*$, then $x^{-1} \in K$. Note that then $x^{-1} = 1/x = \frac{a}{a^2 + 5b^2} - \frac{b\sqrt{5}i}{a^2 + 5b^2}$]

No comments, it is clear by the hint

(b) (nice) Let K as in (a) and A = Q[x] prove that $\frac{A}{(x^2+5)A}$ is ring-isomorphic to K. [Hint : Construct a ring homomorphism from A ONTO K, then use the first isomorphism Theorem.]

Proof. Let $T : A \to K$ such that $T(f(x)) = f(\sqrt{5}i)$. Let $f_{(x)}, f_{2}(x) \in A$. Hence $T(f_{1}(x) + f_{2}(x)) = f_{1}(\sqrt{5}i) + f_{2}(\sqrt{5}i) = T(f_{1}(x)) + T(f_{2}(x))$ and $T(f_{1}(x)f_{2}(x)) = f_{1}(\sqrt{5}i)f_{2}(\sqrt{5}i) = T(f_{1}(x))T(f_{2}(x))$. Thus T is a ring homomorphism. We show that T is ONTO. Let $y \in K$. Then $y = a + b\sqrt{5}i$ for some $a, b \in Q$. Let $f(x) = a + bx \in Q[x]$. Then $T(f(x)) = f(\sqrt{5}i) = a + b\sqrt{5}i = y$. Hence T is ONTO. We know $Ker(T) = \{h(x) \in A \mid T(h(x)) = h(\sqrt{5}i) = 0\}$ is an ideal of A. Since A is a PID, Ker(T) = d(x)A for some monic polynomial d(x) such that $T(d(x)) = d(\sqrt{5}i)) = 0$, Since $x^{2} + 5$ is the smallest such polynomial in Q[x]. We conclude that $Ker(T) = (x^{2} + 5)A$. Thus we know $A/Ker(T) \cong Range(T) = K$ (since T is onto). Thus $A/(x^{2} + 5)A \cong K$.

(c)Let R be a PID. Prove that every prime ideal of R is maximal. [hint: Let I be a prime idea of R, then we know $I \subseteq M$ for some maximal ideal M of R. Show $M \subseteq I$, note that R is a PID]

Proof. Let *P* be a prime ideal of *R*. Since *R* is a PID, we have P = pR for some prime element *p* of *R*. Hence $P = pR \subseteq M$ for some maximal ideal *M* of *R*. Since *R* is a PID, M = yR for some nonunit *y* of *R*. Thus $p \in yR$. Hence p = yw for some $w \in R$. Since every prime element of an integral domain is irreducible and p = yw, we conclude $w \in U(R)$. Thus $y = w^{-1}p$. Hence $y \in pR$. Since $y \in pR$ and $p \in yR$, we conclude that P = M is a maximal ideal of *R*.

(d) Let R be a PID. Prove that every irreducible element in R is prime [use (c). Let x be irreducible, then xR lives inside a maximal ideal M of R. Note that, in general, for any ring R, if y in R is prime, then uy is prime for every u in U(R)]

Proof. Let x be an irreducible element of R. Then $xR \subseteq M$ for some maximal ideal M of R. Since R is a PID and every maximal ideal of R is prime, M = pR for some prime element p of R. Hence x = pw for some $w \in R$. Since x is irreducible and p is not a unit of R, we conclude that $w \in U(R)$. Hence x is a prime element of R,

FACTS (know), add to your common knowledge dictionary

Let R be a commutative ring with 1 and $f(x) \in R[x]$. Then

1) $f(x) \in Z(R[x])$ if and only if there is a $w \in Z(R)^*$ such that wf(x) = 0 [nice result, the proof is technical, you need to keep tracking of the coefficients of f(x). So just know it]

2) $f(x) = a_n x^n + \dots + a_1 x + b \in U(R[x])$ if and only if $a_1, \dots, a_n \in Nil(R)$ and $b \in U(R)$ [this is not hard to prove, it is easy to see that $a_n x^n + \dots + a_1 x$ is a nilpotent and by HW 2 nilpotent + unit = unit]

QUESTION 4. Use the fact above

a) Convince me that $f(x) = 3x^5 + 2x + 4 \notin Z(Z_6[x])$ [Note 2, $3, 4 \in Z(Z_6)^*$] By the FACT, There is no $a \in Z(R)^*$ such that af(x) = 0b) Convince me that $f(x) = 10x^{2023} + 5x^3 + 10 \in Z(Z_{15}[x])$. since 3f(x) = 0, by the FACT, we are done. c) Give me a polynomial of degree 1963, say h(x), such that $h(x)(4x^9 + 2x + 6) = 0$ in $Z_{10}[x]$. by (b), let $f(x) = 3x^{1963} + 6x^{63} + 9$ d) Convince me that $f(x) = 6x^2 + 3x + 5 \notin U(Z_{12}[x])$ Since $3 \notin Nil(Z_{12})$, by the FACT, f(x) is not nilpotent. e) Convince me $2x^4 + 6x + 11 \in U(Z_{16}[x])$ Since $2, 6 \in Nil(Z_{16})$ and $11 \in U(Z_{16})$, by the fact, we are done.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 532, Fall 2022, 1-2

MTH 532, HW IV

Ayman Badawi

Submit by midnight Tuesday November 15, 2022, send pdf file only, easy to read and organized to abadawi@aus.edu

QUESTION 1. Let F be a finite field with p^n elements where $n \ge 2$. Prove that (F, +) is never a cyclic group; note that some authors write $GF(p^n)$ (you read it, Galois field with p^n elements) to mean a finite field with p^n elements. [Hint: Note that F is a Z_p -module, use class notes]

Proof. By class notes F is a Z_p -module and $(F,+) \cong A = (Z_p,+)X \cdots \times (Z_p,+)$ $(n \ge 2$ times). By staring, each nonzero element in A is of order p (under addition mod p). Hence A has no elements of order p^n . Since $(F,+) \cong A$, F has no elements of order p^n . Thus (F,+) is not cyclic.

Another proof. We know char(F) = p, i.e., $p.1_F = 1_F + \cdots + 1_F$ (p times) = 0. Let $a \in F^*$. Then $p.a = a + \cdots + a$ (p times) = $(p.1_F)a = 0.a = 0$. Thus the order of a under addition is p. Hence F has no elements of order p^n ($n \ge 2$). Hence (F, +) is not cyclic.

QUESTION 2. (nice and applicable)

a) Let D be an integral domain and f(x) be a monic polynomial of degree 2 or 3 in D[x]. Prove that f(x)) is irreducible in D[x] if and only if there is no $a \in D$ such that f(a) = 0 (i.e., if and only if f(x) has no roots in D)

Proof. Assume f(x) is irreducible of degree n (degree 2 or 3 not needed for this direction), and $a \in D$. Then $f(x) \neq (x-a)h(x)$ for some $h(x) \in D[x]$, where deg(h) < deg(f). Thus $f(a) \neq 0$ for every $a \in D$. For the converse, assume degree(f) = 2. Since $f(a) \neq 0$ for every $a \in D$, we conclude that for every $b, c \in D$, $f(x) \neq (x-b)(x-c)$. Hence f(x) is irreducible. Assume degree(f) = 3. Since $f(a) \neq 0$ for every $a \in D$, we conclude that $f(x) \neq (x-a)h(x)$ for every $a \in D$, and $h(x) \in D[x]$, where deg(h) = 2. Hence f(x) is irreducible.

Note that degree 2 or 3 is needed for the converse. For example, if f(x) is of degree 4 and $f(a) \neq 0$ for every $a \in D$, then f(x) need not be irreducible. It is possible that $f(x) = h_1(x)h_2(x)$, where h_1, h_2 are irreducible of degree 2.

b) Prove that $f(x) = x^3 + x^2 + 2x + 1$ is irreducible in $Z_3[x]$. Since deg(f) = 3 and $f(a) \neq 0$ for every $a \in Z_3$, by (a) we conclude that f(x) is irreducible.

c) Write $f(x) = x^{16} + 1$ as product of irreducible elements in $D = Z_2[x]$ [Hint: Make use of the freshman dream]

Since char(D) = 2, by the freshman dream result, $x^{16} + 1 = x^{2^4} + 1 = (x+1)^{2^4} = (x+1) \times \cdots \times (x+1)$ (16 times).

QUESTION 3. Let $F = GF(5^{28})$ and $L = Aut_{Z_5}(F)$. Recall that if H is a subgroup of L, then we say H fixes the subfield E of F if for each element in H (read again, for EACH element in H), say $h(x) \in H$, we have h(e) = e for each $e \in E$.

Write down all subgroups of L, and for each subgroup of L find the unique fixed subfield of F.

Let $D = \{1, 2, 4, 7, 14, 28\}$ be the set of all factors of 28. By class notes, for each $m \in D$, F has one and only one subfield E_m , where $|E_m| = 5^m$.

We know $|Aut_{Z_5}(F)| = 28$ and $(Aut_{Z_5}(F), o)$ is a cyclic group generated by $f_1 : F \to F$ such that $f_1(a) = a^5$.

- (i) For m = 1, $Aut_{Z_5}(F) = \langle f_1 : F \to F, f_1(a) = a^5 \rangle$ and it fixed the subfield Z_5 , note $|Aut_{Z_5}(F)| = 28$.
- (ii) For m = 2, $Aut_{E_2}(F) = \langle f_2 : F \to F, f_2(a) = a^{5^2} \rangle$ and it fixed the subfield $E_2 = \{a \in F \mid a^{5^2} = a\}$, note $|Aut_{E_2}(F)| = 14$.
- (iii) For m = 4, $Aut_{E_4}(F) = \langle f_4 : F \to F, f_4(a) = a^{5^4} \rangle$ and it fixed the subfield $E_4 = \{a \in F \mid a^{5^4} = a\}$, note $|Aut_{E_4}(F)| = 7$
- (iv) For m = 7, $Aut_{E_7}(F) = \langle f_7 : F \to F, f_7(a) = a^{5^7} \rangle$ and it fixed the subfield $E_7 = \{a \in F \mid a^{5^7} = a\}$, note $|Aut_{E_7}(F)| = 4$

- (v) For m = 14, $Aut_{E_{14}}(F) = \langle f_{14} : F \to F, f_{14}(a) = a^{5^{14}} \rangle$ and it fixed the subfield $E_{14} = \{a \in F \mid a^{5^{14}} = a\}$, note $|Aut_{E_{14}}(F)| = 2$
- (vi) For m = 28, $Aut_{E_{28}}(F) = Aut_F(F) = \langle f_{28} : F \to F, f_{28}(a) = a^{5^{28}} = a \rangle$ and it fixed the subfield F, note $|Aut_{E_{28}}(F)| = 1$

QUESTION 4. Let *R* be a commutative ring with $1 \neq 0$ and $S = \{P | P \text{ is a prime ideal of } R\}$. Prove that $Nil(R) = \sqrt{R}$; recall that $\sqrt{R} = \bigcap_{P \in S} P$ [Hint: We know that $Nil(R) \subseteq P$ for every $P \in S$ and use the result that we proved: If *D* is a multiplicatively closed set and *I* is a proper ideal of *R* such that $D \cap I = \emptyset$, then there is a prime ideal *W* of *R* such that $I \subseteq W$ and $W \cap D = \emptyset$]

Proof. Since $Nil(R) \subseteq P$ for every prime ideal P of R, it is clear that $Nil(R) \subseteq \sqrt{R} = \bigcap_{P \in S} P$. We show that $\bigcap_{P \in S} P \subseteq Nil(R)$. Deny. Then there is an $x \in \bigcap_{P \in S} P \setminus Nil(R)$. Thus $x^m \notin Nil(R)$ for every integer $m \ge 1$.

Thus $D = \{1, x, x^2, ..., x^m, \cdots\}$ is a multiplicatively closed set of R such that $D \cap Nil(R) = \emptyset$. Hence, by class result, there is a prime ideal W of R such that $Nil(R) \subseteq W$ and $W \cap D = \emptyset$. Thus $x^m \notin W$ for every integer $m \ge 1$. In particular, $x \notin W$. Since W is a prime ideal of R and $x \notin W$, we conclude that $x \notin \sqrt{R} = \bigcap_{P \in S} P$, a contradiction. Thus $\bigcap_{P \in S} P \subseteq Nil(R)$. Hence $\sqrt{R} = \bigcap_{P \in S} P = Nil(R)$.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com